成av人电影在线观看欧美一级片

    <th id="eokln"></th>

    <code id="eokln"></code>

      • go to Judea Pearl's profile page
      • go to Ole-Johan Dahl 's profile page
      • go to Yoshua Bengio's profile page
      • go to Richard W. Hamming's profile page
      • go to Martin Hellman 's profile page
      • go to Leonard M. Adleman's profile page
      • go to Marvin Minsky 's profile page
      • go to Niklaus E. Wirth's profile page
      • go to Edward A Feigenbaum's profile page
      • go to John E Hopcroft's profile page
      • go to Leslie G Valiant's profile page
      • go to Dennis M. Ritchie 's profile page
      • go to Douglas Engelbart's profile page
      • go to Edmund Clarke's profile page
      • go to David Patterson 's profile page
      • go to Ronald L Rivest's profile page
      • go to Barbara Liskov's profile page
      • go to Amir Pnueli's profile page
      • go to Whitfield Diffie 's profile page
      • go to Kenneth E. Iverson 's profile page
      • go to Joseph Sifakis's profile page
      • go to Geoffrey E Hinton's profile page
      • go to Allen Newell 's profile page
      • go to Charles P. Thacker's profile page
      A.M. TURING AWARD WINNERS BY...

      Juris Hartmanis DL Author Profile link

      United States – 1993
      Additional Materials

      Hierarchy of Complexity Classes

      This hierarchy states that for any suitable counting function T (and all natural functions are suitable), as long as T0 is somewhat bigger than T (namely, that infinitely often T0 exceeds T2 and later improved by Hennie [1] so that infinitely often T0 exceeds T log T), there are sequences and sets that can be computed in time T0 but not time T. This worst case “infinitely often” type of analysis and idea of complexity classes (i.e. the class of functions, sets or sequences computable within time bound T) was adopted by Cook, Karp, and Levin in establishing the importance of the difference between P (deterministic polynomial time) and NP (non-deterministic polynomial time or what can be verified in polynomial time).

      Oral interview

      An oral interview (both transcript and audio recording) with Hartmanis can be found here.

      Cornell University has also made available a 70-minute conversation with Hartmanis in their digital repository here.



      [1] F. C. Hennie and R. E. Stearns, “Two-tape simulation of multitape Turing machines,”. Journal of the ACM, Vol. 13, Num. 4, 1966, pp. 533–546.ape Si

       

       

      成av人电影在线观看欧美一级片
        <th id="eokln"></th>

        <code id="eokln"></code>